
Abstract. A four-component density functional program
package (Beijing Density Functional), suitable for the
calculation of total-energy-related chemical properties of
systems containing heavy atoms, was developed. The
code is based on modern sophisticated exchange-corre-
lation functionals and was applied to calculate the
spectroscopic constants of the lanthanide diatomic
molecules of EuO, EuS, YbO and YbS. It is suggested
that the experimental bond lengths for EuS and YbS,
derived from empirical interpolations, need to be
revised. Relativistic e�ects on the electronic structure
are discussed and compared with results from previous
work. The involvement of the lanthanide valence orbit-
als in chemical bonding is investigated with a newly
developed population and bonding analysis approach.
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1 Introduction

Over the past decades the chemistry of lanthanides has
been attractive and challenging to both experimentalists
and theoreticians [1±4]. On the one hand, well-assigned
experimental data are available for only a few, mostly
diatomic, lanthanide compounds [5±8]. On the other
hand, theoretical calculations are rather complicated due
to the complex electronic structure and large electron
correlation e�ects arising from the open 4f , 5d, 6s and
6p valence shells as well as signi®cant relativistic e�ects
due to the heavy nuclei (Z=57 for La to Z=71 for Lu)
[9]. Nevertheless, various theoretical investigations

have been performed [9, 10]. First of all, semi-empirical
approaches such as ligand ®eld theory [11, 12], relativ-
istic extended HuÈ ckel theory [13] and INDO methods
[14±17] have been shown to be very useful in interpreting
many geometric, spectroscopic and magnetic properties
of lanthanide compounds. Ab initio energy-consistent
quasirelativistic pseudopotentials (QR-PP) have been de-
signed and applied to predict low-lying electronic states
of lanthanide systems [18±22]. Similar shape-consistent
pseudopotentials are also available and have been used
in several applications [23]. Finally, density functional
theory (DFT) has played an important role in explaining
the electronic structure and chemical bonding of lan-
thanide compounds [9, 10, 24±27]. Recently the Amster-
dam density functional program package (AMOL) [28],
in which relativity was accounted for as a ®rst-order
perturbation, was used to derive the spectroscopic
constants of some lanthanide diatomics [29, 30].

The goal of the present work is threefold. First, since
the computational e�ort necessary to carry out pure ab
initio calculations that account well for both relativistic
e�ects and electron correlation e�ects is tremendous, it is
worthwhile to develop a four-component fully relativis-
tic density functional program package which can deal
with total-energy-related chemical properties accurately,
but at a much smaller expense compared to standard
quantum chemical methods. Such a program package,
the Beijing density functional (BDF), is presented in
Sect. 2. Second, modern density functional theory has
been shown to perform well for light element systems as
well as transition metal complexes [31], but yields less
satisfactory results for inner 4f shells [29]. The work
presented in Sect. 3.1 shows, however, that the currently
available (nonrelativistic) functionals can also work
reasonably well in these cases when a fully relativistic
framework is applied. Third, the amount of the partici-
pation of Ln 4f orbitals in chemical bonding has been
discussed controversially for a long time. Some authors
argued that 4f orbitals are signi®cant for chemical
bonding [24], whereas others claimed that 4f orbitals are
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essentially core-like and thus have no signi®cant (direct)
contributions to chemical bonding [14]. A well-de®ned
method, atomic orbitals in molecules (AOIM) [32], with
the merit of basis set independence and characterized by
a clear physical picture also in the case of calculations
with extended basis sets, will be employed in Sect. 3.2 to
analyze the chemical bonding of the diatomic lanthanide
molecules studied here.

Experimental evidence (cf. [7, 8]) indicates that the
ground states of the lanthanide monoxides arise from
4f nr1 supercon®gurations (xe � 830 cmÿ1), except in
the case of EuO and YbO where 4f n�1 supercon®gura-
tions (xe � 670 cmÿ1) are preferred due to the enhanced
stability of a half-®lled or ®lled 4f shell, respectively.
EuS and YbS are suspected to have a similar electronic
structure. DFT [29] calculations con®rmed the above
point of view. Ab initio QR-PP calculations [19, 21],
however, predicted that in YbO 4f 13r1�3R��0ÿ�� is
lower than 4f 14�1R��0���. In this contribution we will
only focus on the 4f n�1 supercon®gurations. The ques-
tion whether the 1R��0�� or 3R��0ÿ� state is the real
ground state for YbO will be investigated in detail else-
where. The present calculations will be compared with
other theoretical results and available experimental data.

2 Theoretical methods

The Hohenberg-Kohn theorem [33], underlying density
functional theory, has also been shown to be valid for
the relativistic case [34]. The corresponding Dirac-Kohn-
Sham equations have been formulated by Rajagopal [35]
and MacDonald and Vosko [36]. An overview, including
the quantum electrodynamical basis, of relativistic
density functional theory has been given by Gross and
Dreizler [37] and Engel et al. [38].

Within the so-called no-sea approximation the Dirac-
Kohn-Sham equation for a spinor uj reads

�c~a �~p � �bÿ 1�c2 � V DKS�~r��uj�~r� � �juj�~r�: �1�
Here ~p � ÿi ~5 is the usual momentum operator and c
denotes the speed of light.~a and b are the Dirac matrices

~a � 0 ~r
~r 0

� �
and b � I 0

0 ÿI

� �
�2�

where ~r represents the vector of the 2� 2 Pauli spin
matrices (rx, ry , rz) and I is the 2� 2 unit matrix. The
potential operator reads

V DKS�~r� � Vext�~r� � Vc�~r�/R
c � Vxc�q�~r��/R

xc �3�
where /R

c and /R
xc are relativistic corrections, e.g., the

Breit term to the Coulomb and exchange-correlation
potentials, respectively. In fact, it has been shown that
these corrections are signi®cant only for the innermost
shells of heavy atoms and turn out to be negligible for
valence shells [38, 39]. In heavy-atom-containing molec-
ular calculations the frozen-core approximation usually
has to be adopted, which means that the errors due to
the neglect of these relativistic corrections are kept
constant along the whole energy surface. On the other
hand, the available relativistic corrected exchange-cor-

relation functionals are still not fully satisfactory [38].
Neglecting the relativistic corrections to the electron-
electron interaction (/R

c � 1, /R
xc � 1) the three terms in

Eq. (3) read

Vext�~r� � ÿ
X

A

ZA

j~RA ÿ~rj
; �4�

Vc�~r� �
Z

q�~r2�
j~r1 ÿ~r2j d~r2; �5�

Vxc�q�~r�� � dExc�q�~r��
dq

: �6�

The charge density is given as

q�~r� �
X

j

nju
�
j �~r�uj�~r�: �7�

Although the exact form of the exchange-correlation
potential Vxc�q�~r�� remains unknown, some sophisticat-
ed (nonrelativistic) functionals are available, e.g., the
Vosko-Wilk-Nusair formula [40] within the local density
approximation (LDA), a self-interaction (SI) correction
according to Stoll et al. [41] and nonlocal exchange
corrections (NLx) according to Becke [42] as well as
nonlocal correlation corrections (NLc) according to
Perdew [43] and Lee et al. [44]. All these functionals were
implemented in the BDF. The Dirac-Slater discrete
variational method to solve the Dirac-Kohn-Sham
Eq. (1) developed by Ellis and coworkers [45, 46] was
the ®rst available four-component density functional
program package. The multi-dimensional Diophantine
numerical integration and self-consistent multipolar
(SCM) ®tting of the charge density were employed to
calculate the matrix elements [45]. This scheme works for
orbital-related properties such as photoelectron or
optical spectra as well as orbital contributions to
chemical bonding [46] but precludes calculations of
potential energy curves. An old version of this program
served as a starting point for the BDF code.

The strategy to improve the accuracy of molecular
total energy calculations has been discussed in detail
elsewhere [47]. Brie¯y, the partition functions of Becke
[48] were employed to decompose the multicenter
molecular integrals into a summation over one-center
contributions. The one-center radial integrals can be
accurately calculated by the generalized Gauss-Laguerre
quadrature [49], while the angular integrals can be
performed by the Lebedev quadrature [50]. To solve
Poisson's equations e�ciently the charge density [Eq. (7)]
can be expanded into a rapidly convergent multipolar
form [51], namely

qmodel�~r� �
X

A

Xlmax

l�0

Xl

m�ÿl

Ylm�d~r;~RA�qAlm�j~r ÿ~RAj�; �8�

qAlm�j~r ÿ~RAj� �
Z

Ylm�d~r;~RA�PA�~r�q�~r�dX; �9�

in which PA�~r� is the partition function centered on atom
A according to Becke's formula [48]. The corresponding
Coulombic potential has the form
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V �~r� �
X

A

Xl0max

l�0

Xl

m�ÿl

4p
2l� 1

Ylm�d~r;~RA�VAlm�j~r ÿ~RAj�; �10�

VAlm�rA� � rÿlÿ1
A

Z rA

0

qAlm�s�sl�2ds� rl
A

Z 1
rA

qAlm�s�s1ÿlds:

�11�
The lmax in Eq. (8) and l0max in Eq. (10) were chosen to be
5 in the present calculations. The above scheme com-
bines the merits of the best currently available numerical
techniques in DFT calculations and was shown to
perform very e�ciently [47, 52].

The described numerical calculation of the necessary
matrix elements allows the use of any type of basis
functions. In this work the frozen-core approximation
was employed for the following cores: �1s2 ÿ 4d10� for
europium and ytterbium, �1s2� for oxygen and �1s2 ÿ 2p6�
for sulfur. Four-component numerical atomic orbitals
obtained by ®nite-di�erence atomic calculations were
used for the cores, while the basis sets for the valence
orbitals were the combination of the numerical atomic
orbitals and kinetically balanced double-zeta, Slater-
type functions. The di�use 2p (3p) functions, two sets of
polarized 3d functions and one set of 4f functions were
added to oxygen (sulfur).

Finally, the generalized transition-state method de-
veloped by Ziegler and Rauk [53] was adapted to the
frozen-core approximation and the nonlocal corrections
to improve the numerical accuracy of the total energies
and to obtain the dissociation energies directly [47].
This scheme essentially treats the reference atoms and
molecular states in a counterpoise way and can avoid
the numerical errors due to the subtraction of two large
total energies. The resultant basis set superposition
error is about 0.1 eV and the dissociation energy was
found to be convergent to 0.001 eV with respect to the
number of integration points. Since the emphasis of the
current work was on the numerical accuracy rather
than on the speed of the computations, we used a
comparatively large number of integration points: the
number of radial � angular grid points was 100� 194
and 80� 194 for the lanthanide and chalcogen atoms,
respectively.

3 Results and discussion

3.1 Atomic calculations

The term energies for several electronic states of the
europium and ytterbium atoms and their cations, which

Table 1. Atomic energies (in eV) from the present fully relativistic
density functional calculations (BDF) in comparison to experi-
mental data (Expt. [55]) and results from other theoretical methods
(AMOL [29]; P-PP scalar quasirelativistic pseudopotential [18];
ACPF averaged coupled pair functional [54]); LDASI local density

approximation [40] with self-interaction correction [41];NLx nonlo-
cal exchange correction [42]; NLc nonlocal correlation correction
[43]; NLxc both nonlocal exchange and correlation corrections [42,
43]. Nonrelativistic values are given in square brackets. Spin-orbit
averaged experimental values are given in parentheses

Atom Con®gurationa Term BDF AMOL PP

LDASI NLx NLc NLxc LDASI NLx Expt. ACPF (Expt.)

Eu f 7s2 8S7/2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (0.00)

Eu f 7s1d1 10D5/2 1.37 1.46 1.23 1.31 1.49 1.50 1.60 1.73 (1.66)

[0.84] [0.93] [0.72] [0.81] [0.84] [0.93]

Eu f 7s1p1 10P7/2 1.82 1.87 1.66 1.70 1.74 2.38 (1.84)

Eu f 6s2d1 8H 3.74 3.78 3.68 3.72 4.74 4.84 (3.67)b

Eu+ f 7s1 9S4 5.68 5.80 5.45 5.58 5.42 5.53 5.67 5.50 (5.67)

Eu+ f 6s2 7F0 10.00 10.09 9.86 9.95

Eu+ f 6s1d1 9H 9.75 9.90 9.45 9.60 10.57 10.79 9.77 (9.90)b

Eu++ f 7s0 8S7/2 16.95 17.15 16.55 16.77 16.91 16.64 (16.91)

Eu++ f 6s1 8F1/2 22.51 22.71 22.13 22.33 22.63 22.29 (22.99)

Eu++ f 6s1 6F1/2 22.83 23.03 22.49 22.68 22.89 (23.26)

Eu+++ f 6s0 7F0 41.59 41.87 40.96 41.23 41.83 41.28 (42.22)

Yb f 14s2 1S0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (0.00)

Yb f 14s1p1 3P0 2.38 2.40 2.23 2.25 2.43 2.46 2.14 3.06 (2.34)

Yb f 14s1d1 3D1 2.84 2.90 2.73 2.78 2.78 2.85 3.04 3.50 (3.09)

[2.00] [2.08] [1.90] [1.99] [1.97] [2.05]

Yb+ f 14s1 2S1/2 6.33 6.43 6.11 6.22 6.25 5.99 (6.25)

Yb+ f 13s2 2F7/2 9.02 9.09 8.80 8.88 9.61 9.70 8.91 9.13 (9.43)

Yb++ f 14s0 1S0 18.45 18.66 18.01 18.22 18.44 17.80 (18.44)

Yb++ f 13s1 3F4
c 22.80 23.00 22.34 22.53 23.33 23.53 22.74 22.58

(23.30)

Yb++ f 13s1 1F3
d 22.85 23.04 22.39 22.58 22.78

Yb+++ f 13s0
2F7/2 43.48 43.76 42.71 42.98 43.49 42.63 (44.03)

a The jj coupling sheme was used in present calculations, e.g., the f 6 con®guration corresponds to f 3
5=2 f 3

7=2, whereas p
1 and d1 correspond to

p11=2 and d13=2, respectively. The non-half-®lled open shells were calculated with averaged fractional occupation. Kramer's degeneracy was
adoped to perform the moment polarization calculations in the same way as in nonrelativistic spin polarization calculations
b The H-states have not been measured. The spin-orbit averaged energies were estimated by Wang et al. [29]
c,d The experimental labels (j1, j2)J are (7/2, 1/2)4 and (7/2, 1/2)3, respectively
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were calculated in the same manner as the molecules, are
listed in Table 1. The jj coupling scheme was employed
and Kramer's degeneracy was adopted to carry out
moment polarization calculations for open shells in the
same way as in nonrelativistic spin polarization calcu-
lations [46]. Self-consistent ®eld (SCF) calculations were
performed within the local density approximation with
self-interaction correction (LDASI) [40, 41]. NLx cor-
rections [41] and NLc corrections [43] or both of them
(NLxc) were added as perturbations for the converged
charge density. The double point D�8h group was
employed in the calculations. The non-half-®lled open
shells, e.g., f 7

7=2 for the Yb� f 13s2 con®guration, were

calculated with averaged fractional occupation in order
to obey the Aufbauprinzip. We also performed the
calculations on the states with electronic holes in the
individual �j;mj� sublevels. Again, take Yb� f 13s2 as an
example: the obtained term energies at the LDASI level
are 9.32 eV for one hole in �7=2; 1=2�, 9.07 eV for one
hole in �7=2; 3=2�, 9.05 eV for one hole in �7=2; 5=2�, and
9.62 eV for one hole in �7=2; 7=2�, respectively.

The di�erences between these numbers are due to
symmetry breaking occurring in D�8h. The Aufbauprinzip
was disobeyed in these calculations, i.e., the unoccupied
f spinor is lower in energy than some occupied ones;
thus the con®guration with averaged fractional occu-
pation can give a lower-term energy, i.e., 9.02 eV, which
has to be compared with the lowest experimental value
of 8.91 eV. Other theoretical results [21, 29, 54] obtained
in the LS coupling scheme and available experimental
data [55] are also given in Table 1 for comparison. The
experimental values for the 8H state of Eu�f 6s2d1� and
the 9H state of Eu��f 6s1d1� are not available, but were
estimated by Wang et al. [29].

It can be seen from Table 1 that the maximum ab-
solute deviations of the current relativistic calculations
from available experimental data are typically less than
0.5 eV at all the levels of calculations, whereas nonrel-
ativistic calculations fail to reproduce the experimental
values. The standard deviations from available experi-
mental values for europium are 0.14 eV (LDASI),
0.14 eV (NLx), 0.46 eV (NLc) and 0.29 eV (NLxc). The
corresponding values for ytterbium are 0.13 eV (LDA-
SI), 0.24 eV (NLx), 0.42 eV (NLc) and 0.25 eV (NLxc).
Obviously, relativistic LDASI performs very well for all
the states studied here. NLx and NLc corrections tend to
increase and decrease the term energies, respectively.
Suprisingly, the term energies for con®gurations with f 6

and f 13 occupation in Eu and Yb, respectively, are also
reproduced reasonably well. However, empirical cor-
rections had to be made in the corresponding AMOL
calculations [29]. Probably this is due to the use of
appropriate four-component numerical atomic orbitals
in the present calculations.

The BDF results presented here even have a better
accuracy than the large-scale scalar energy-consistent
QR-PP [18] averaged coupled-pair functional calcula-
tions (ACPF) [54] with (12s11p9d8f 4g)/[9s8p6d5f 4g]
basis sets which were performed for comparison, e.g.,
their standard deviations from the spin-orbit averaged
experimental data are 0.51 eV and 0.73 eV for Eu and

Yb, respectively. The reliability of the relativistic density
functional approach implemented in BDF has been
demonstrated by the atomic calibration calculations. It
is expected that results of the similar quality can be
obtained for molecules provided that a comparable nu-
merical accuracy is achieved.

3.2 Molecular calculations

To demonstrate the numerical stability of the present
calculations with respect to the number of integration
points, we performed three types of calculations on
YbO(f 14 1R��: the integration points (radial � angular)
for Yb and O were chosen as (60 � 110, 40 � 110), (80 �
194, 60 � 110) and (100 � 194, 80 � 194), respectively.
SCF calculations were performed at the LDASI level.
Nonlocal corrections were then considered as perturba-
tions. All spectroscopic constants were derived from a
fourth-degree polynomial through ®ve points of the
potential curve with a spacing of 0.05 AÊ near the
equilibrium distance. The obtained molecular total
energies, dissociation energies, bond lengths and vibra-
tional frequencies are given in Table 2. It can be seen

Table 2. Convergence of the total energies DE (au)a, dissociation
energies De (eV), bond lengths Re (AÊ ) and vibrational frequencies
xe (cm

ÿ1) of YbO with respect to the number of integration points
(radial � angular) of Yb and O: a � (60 � 110, 40 � 110); b �
(80 � 194, 60 � 110); c � (100 � 194, 80 � 194); for other
explanations, cf. Table 1

Method Integration

points

DE De Re xe

Nonrelativistic

LDASI a 0.00000 5.655 1.886 692

b )0.01669 5.647 1.890 672

c )0.01527 5.648 1.890 704

NLx a 0.00000 4.417 1.943 632

b )0.01001 4.417 1.945 661

c )0.00858 4.414 1.943 630

NLc a 0.00000 5.950 1.857 732

b )0.00984 5.939 1.855 727

c )0.00851 5.940 1.862 720

NLxc a 0.00000 4.674 1.918 660

b )0.01669 4.670 1.923 645

c )0.01530 4.670 1.920 672

Relativistic

LDASI a 0.00000 5.439 1.835 757

b )0.04745 5.433 1.839 750

c )0.05535 5.433 1.839 757

NLx a 0.00000 4.349 1.888 686

b )0.04749 4.349 1.891 682

c )0.05539 4.349 1.890 685

NLc a 0.00000 5.803 1.809 798

b )0.04746 5.795 1.812 790

c )0.05536 5.795 1.813 791

NLxc a 0.00000 4.674 1.865 717

b )0.04750 4.671 1.868 710

c )0.05540 4.672 1.868 718

a The DE are relative to the corresponding energies of ``a'' at the
internuclear distance of 1.90 AÊ
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that although the total energies are only converged to
0.0015 au and 0.0079 au for nonrelativistic and relativ-
istic calculations, respectively, the dissociation energies,
which were obtained by the transition-state method [53],
and the bond lengths are converged to 0.003 eV and
0.003 AÊ , respectively. The vibrational frequencies, which
are more sensitive, have ¯uctuations of up to 30 cmÿ1.

To achieve a su�cient numerical accuracy of results
for all the molecules studied here, we used 100 � 194
and 80 � 194 for the lanthanide and chalcogen atoms,
respectively. The calculated dissociation energies, bond
lengths and vibrational frequencies for the molecu-
lar (ground) states of EuO�f 7 8Rÿ�, YbO�f 14 1R��,
EuS�f 7 8Rÿ� and YbS�f 14 1R�� are presented in

Tables 3, 4, and 5, respectively. Experimental data [5±8]
and other theoretical results, including QR-PP con®gu-
ration interaction calculations [19±21] as well as the re-
sults derived from di�erent versions of the Amsterdam
density functional program package (i.e AMOL with
relativistic ®rst-order perturbation theory [28] and ADF
with a self-consistent one-component relativistic treat-
ment [56]), are also cited for comparison. Spin-orbit
coupling and Stoll's SI corrections were accounted for in
the AMOL [29] but not in the ADF [56] calculations. A
comparison to the ADF results is still meaningful since
the contributions of spin-orbit coupling to the dissocia-
tion energies of the molecular states studied here are not
larger than 0.1 eV [57].

Table 3. Dissociation energies (in eV) for EuO( f 7 8Rÿ�;YbO
� f 14 1R�), EuS( f 7 8Rÿ), and YbS( f 14 1R�). BDF present work;
AMOL [29]; ADF [56]; QR-PP quasirelativistic pseudopotential
[20, 21]; Expt. experimental values [5±8]; LDA local density

approximation [40]; SI, self-interaction correction [41]; NLx non-
local exchange correction [42]; NLc nonlocal correlation correction
[43]; NLxc both nonlocal exchange and correlation corrections [41,
42]; NR nonrelativistic; R relativistic; R-NR relativistic corrections

Method EuO YbO EuS YbS

NR R R-NR NR R R-NR NR R R-NR NR R R-NR

LDASI AMOL 7.15 6.31 )0.84 5.89 5.04 ±0.85

LDASI BDF 6.98 6.34 )0.64 5.65 5.43 )0.22 5.09 4.48 )0.61 4.30 3.75 )0.55
LDA ADF 7.60 6.92 )0.68 6.15 5.85 )0.30 5.53 4.88 )0.65 4.73 4.20 )0.53
LDA BDF 7.51 6.83 )0.68 6.12 5.76 )0.36 5.59 4.80 )0.79 4.67 3.94 )0.73
NLxSI AMOL 6.07 5.19 )0.88 4.91 4.06 )0.85
NLxSI BDF 5.65 5.17 )0.48 4.42 4.35 )0.07 4.23 3.52 )0.71 3.39 2.81 )0.58
NLx ADF 6.51 5.85 )0.66 4.84 4.83 )0.01 4.65 4.00 )0.65 3.92 3.26 )0.66
NLx BDF 6.15 5.68 )0.47 4.86 4.65 )0.21 4.56 3.88 )0.67 3.67 3.02 )0.65
NLcSI BDF 7.14 6.72 )0.42 5.94 5.80 )0.14 5.48 4.94 )0.54 4.64 4.21 )0.43
NLc BDF 7.86 7.22 )0.64 6.43 6.12 )0.31 5.97 5.28 )0.69 5.01 4.35 )0.66
NLxcSI BDF 5.94 5.55 )0.39 4.67 4.67 +0.00 4.58 3.99 )0.59 3.74 3.27 )0.47
NLxc ADF 6.80 6.17 )0.63 5.13 5.16 +0.03 4.98 4.35 )0.63 4.15 3.63 )0.52
NLxc BDF 6.46 6.04 )0.42 5.13 4.97 )0.16 4.90 4.32 )0.58 3.98 3.39 )0.59
QR-PP 4.68 3.92 )0.76 2.53a

Expt. 4.96 4.33 3.71 2.73

a The ground state of the QR-PP calculation is YbO ( f 13r1 3R��0ÿ�) with 3.46 eV

Table 4. Bond lengths (in AÊ ); for explanations see, Table 3

Method EuO YbO EuS YbS

NR R R-NR NR R R-NR NR R R-NR NR R R-NR

LDASI AMOL 1.87 1.84 )0.03 1.88 1.87 )0.01
LDASI BDF 1.88 1.85 )0.03 1.89 1.84 )0.05 2.41 2.38 )0.03 2.38 2.32 )0.06
LDA ADF 1.85 1.84 )0.01 1.85 1.81 )0.04 2.37 2.35 )0.02 2.35 2.29 )0.06
LDA BDF 1.86 1.85 )0.01 1.87 1.82 )0.05 2.39 2.37 )0.02 2.36 2.30 )0.06
NLxSI AMOL 1.93 1.89 )0.04 1.94 1.93 )0.01
NLxSI BDF 1.94 1.90 )0.04 1.94 1.89 )0.05 2.47 2.44 )0.03 2.44 2.38 )0.06
NLx ADF 1.90 1.89 )0.01 1.89 1.86 )0.03 2.41 2.41 )0.00 2.40 2.35 )0.05
NLx BDF 1.92 1.90 )0.02 1.93 1.88 )0.05 2.44 2.43 )0.01 2.41 2.36 )0.05
LDASI BDF 1.85 1.83 )0.02 1.86 1.81 )0.05 2.38 2.35 )0.03 2.35 2.29 )0.06
NLc BDF 1.83 1.82 )0.01 1.84 1.79 )0.05 2.36 2.33 )0.03 2.33 2.27 )0.06
NLxcSI BDF 1.91 1.88 )0.03 1.92 1.87 )0.05 2.44 2.42 )0.02 2.41 2.35 )0.06
NLxc ADF 1.87 1.86 )0.01 1.87 1.84 )0.03 2.40 2.38 )0.02 2.35 2.32 )0.03
NLxc BDF 1.89 1.87 )0.02 1.90 1.86 )0.04 2.42 2.40 )0.02 2.38 2.34 )0.04
QR-PP 1.91 1.92 +0.01 1.90 1.89a )0.01
Expt. 1.89 1.81 2.39b (2.51)b 2.60b

a The ground state of the QR-PP calculation is YbO (f 13r1 3R��0ÿ�) with 1.79 AÊ

b Empirically interpolated results. The values of 2.39 AÊ and 2.51 AÊ for EuS were derived from di�erent interpolations [6]
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3.2.1 Dissociation energies. It can be seen from Table 3
that nonrelativistic LDA calculations overestimate the
dissociation energies by about 2.0 eV for the molecules
studied here. NLx corrections reduce the dissociation
energies and thus the deviations are reduced to about
1.0 eV, whereas NLc corrections again increase the
dissociation energies and therefore lead to larger dis-
crepancies. Stoll's SI correction tends to reduce the
dissociation energies by a few 0.1 eV. Relativistic
corrections improve the dissociation energies drastically.
However, the magnitudes of relativistic corrections are
quite di�erent at di�erent levels of correlation treatment,
re¯ecting the fact that relativistic e�ects and correlation
e�ects are not additive for heavy element systems.

Although di�erent basis sets were used, the present
BDF results with and without SI corrections are in
agreement with those of previous AMOL and ADF
calculations, respectively. The NLx and SI corrected
relativistic results are closest to the experimental values,
the maximum absolute errors being less than 0.2 eV. The
best level of theory applied here, i.e., BDF NLxcSI, gives
dissociation energies in satisfactory agreement with the
experimental values, i.e., EuO (calc. 5.55 eV, expt.
4.96 eV), YbO (calc. 4.67 eV, expt. 4.33 eV), EuS (calc.
3.99 eV, expt. 3.71 eV) and YbS (calc. 3.27 eV, expt.
2.73 eV).

3.2.2 Bond lengths. It is discernible from Table 4 that the
BDF bond lengths are in good agreement with those of
the previous AMOL and ADF studies. The well-known
tendency of the LDA approach to underestimate bond
lengths of metal-ligand bonds [31] is evident. NLx
corrections tend to elongate the bonds, resulting in
overestimations of bond lengths by several 0.01 AÊ ,
whereas NLc corrections shorten the bonds. SI correc-
tions elongate the bonds by up to 0.02 AÊ . Relativistic
e�ects are found to shorten the bonds only slightly.
Thus, both NLx and NLc corrected relativistic results
are usually in line with experimental data. The BDF
NLxcSI results for EuO (1.88 AÊ ) and YbO (1.87 AÊ )
agree only for EuO with the experimental values (1.89 AÊ ;
1.81 AÊ ). It should be noted, however, that all calcula-
tions reported so far, i.e., BDF, AMOL, ADF and

QR-PP, do not support the experimental bond length of
1.81 AÊ [8] for a f 14 1R� state of YbO. The bond length
for EuS was estimated by empirical interpolation to be
2.39 AÊ and later corrected to be 2.51 AÊ [6]. The present
calculations as well as the ADF results [56] are closer to
2.39 AÊ . In addition, the ``experimental'' value of 2.60 AÊ

for YbS, derived in the same way as for EuS, also seems
to be too long and should probably be revised. The value
of 2.60 AÊ for YbS is also questionable because it is
substantially larger than that of EuS, contradicting the
usually observed lanthanoid contraction. The calculated
bond lengths for YbO and YbS are slightly shorter than
the corresponding values for EuO and EuS and are thus
consistent with the expected lanthanoid contraction.

3.2.3 Vibrational frequencies. The BDF vibrational
frequencies are in agreement with those from AMOL
and ADF as well as QR-PP calculations as seen from
Table 5. Nonlocal corrections in¯uence the vibrational
frequencies only modestly. Relativity also has no
signi®cant e�ects. Both NLx and NLc corrected relativ-
istic results are in agreement with experimental data
within an error bar of 30 cmÿ1. At the NLxcSI level the
BDF results for EuO (705 cmÿ1) and YbO (718 cmÿ1)
are only slightly larger than the experimental values
(672 cmÿ1; 699 cmÿ1). It is noteworthy, and at present
unexplained, that although the BDF relativistic correc-
tions found for EuO are similar to those from previous
AMOL calculations, our values for YbO are substan-
tially larger and of di�erent sign.

3.2.4 Electronic structure and analysis of chemical
bonding. In the following discussions, for the sake of
simplicity, we will omit the di�erence in the terminology
for nonrelativistic molecular orbitals (MOs) and relativ-
istic molecular spinors (MSs). By comparing the energy
levels and compositions of MOs for these molecules, the
following features can be derived:

1. In the nonrelativistic approximation, the occupied
MOs for EuO can be divided into three groups. The
®rst group involves 10 orbitals which are located

Table 5. Vibrational frequencies (in cm)1); for explanations, see Table 3

Method EuO YbO EuS YbS

NR R R-NR NR R R-NR NR R R-NR NR R R-NR

LDASI AMOL 710 726 +16 687 678 )9
LDASI BDF 705 742 +37 704 757 +53 385 388 +3 376 393 +17

LDA BDF 724 750 +26 707 778 +69 398 398 +0 392 403 +11

NLxSI AMOL 655 675 +20 623 615 )8
NLxSI BDF 647 685 +38 631 685 +54 358 360 +2 355 364 +9

NLx BDF 674 691 +17 641 691 +50 373 368 )5 365 375 +10

NLcSI BDF 741 770 +27 721 791 +70 401 407 +6 388 411 +23

NLc BDF 749 783 +34 756 831 +75 413 418 +5 407 423 +16

NLxcSI BDF 667 705 +38 672 718 +46 373 374 +1 365 379 +14

NLxc BDF 695 714 +19 661 727 +66 386 383 )3 380 388 +8

QR-PP 702 702 +0 679a

Expt. 672 699 400b 410b

a The ground state of the QR-PP calculation is YbO ( f 13r1 3R��0ÿ�) with 884 cm)1

b Empirically interpolated results
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within the range of ÿ45 to ÿ17 eV, and mainly
consists of Eu 5s, 5p and O 2s orbitals. The second
group involves six orbitals which are located within
ÿ5:5 to ÿ4:5 eV. They are O 2p orbitals mixed to
some extent with Eu 5d orbitals. The third group
involves seven orbitals, namely Eu 4f orbitals. They
are located within ÿ4 to ÿ3 eV. The LUMO mainly
consists of the Eu 6s orbital.

Relativistic e�ects spread the energy ranges of the
three groups of orbitals, but do not change the order of
the MO energy levels. They lower the energy of the
LUMO and thus result in a narrower HOMO-LUMO-
energy gap, i.e., 0.43 eV, compared to the nonrelativistic
value of 1.2 eV.

2. The feature of the nonrelativistic MOs for YbO is
similar to that for EuO except that the group related
to O 2p orbitals possesses higher energies than the Yb
4f -like group. However, spin-orbit interaction splits
the Yb 4f group into three subgroups staggered with
the O 2p-like group and shifts one subgroup (4f7=2) to
the frontier region; therefore the HOMO changes
from O 2p-like to Yb 4f -like orbitals due to relativ-
istic e�ects.

3. The MOs for EuS and YbS have similar features to
YbO, that is, in the nonrelativistic approximation the
MOs can be divided into three groups and the group
related to the S 3p orbitals is located in the higher
energy region, while relativistic e�ects split the Ln 4f -
likeMOs and shift a part of them to the frontier region.

The in¯uence of relativistic e�ects on the electronic
structure of lanthanide-containing compounds mainly
exhibits itself in the MOs predominantly of Ln 4f
character as summarized in Table 6. It can be seen that
relativistic e�ects result in large spin-orbit splitting and
promote the Ln 4f -like orbitals to the frontier region,
which is in accordance with the fact that both Eu and Yb
can readily form trivalent compounds , i.e., lose one
f electron in addition to the two s electrons. The
narrowing of the energy gaps between LUMOs and
HOMOs must result in some changes in the molecular
properties. Thus relativistic e�ects have to be taken into

account for a correct description of the electronic
structure and chemical bonding of lanthanide-contain-
ing molecules, especially when the ligands are also heavy
elements.

Atomic charges or valence states in molecules, as well
as the participation of atomic valence orbitals in chemical
bonding, are questions of interest to chemists. Mulliken
population analysis [58] is probably the most widely used
approach for a quantitative analysis. However, it su�ers
from a strong dependence on the basis sets. On the other
hand, it becomes physically ambiguous to describe the
contributions of ``atomic orbitals'' to chemical bonding
with extended basis sets, because in that case a basis
function does not correspond to an atomic orbital. These
defects can be avoided by the introduction of AOIM,
which are de®ned to be the eigenvectors of the system
with the spherically averaged molecular potential ®eld
centered at the relevant atomic nucleus [32].

Table 7 presents the Mulliken population based on
AOIM as well as the dipole moments and their deriva-
tives. The atomic populations are very similar to those
obtained by the AMOL [29]. Relativistic e�ects decrease
the electronic population on Ln 5d and 4f orbitals,
whereas they increase the population on Ln 6s and 6p
orbitals, in accordance with the fact that relativity sta-
bilizes the Ln 6s and 6p orbitals while it destabilizes the
Ln 5d and 4f orbitals. The population on the Ln 6s
orbital is less than one and that on the 5d orbitals is

Table 6. Relativistic e�ects on the lanthanide 4f orbitals. The non-
relativistic values are given in parentheses (in eV)a

Molecule Center of

MOs

Spin-orbit

splitting

Primary

HOMO

Components

LUMO

Energy

gap

EuO )3.84 0.66 4f 6s 0.43

()4.00) (4f ) (6s) (1.19)

YbO )4.58 1.36 4f 6s 0.43

()4.83) (2p) (6s) (1.35)

EuS )4.08 0.68 4f 6s 0.48

()5.43) (3p) (6s) (0.70)

YbS )5.11 1.41 4f 6s 0.47

()8.26) (3p) (6s) (0.97)

a The center of gravity of the 4f-like MOs was calculated with
the formulas: Ecent�NR� � �E�4fd� � E�4f/��=2, Ecent�R� � �4E
�4f5=2;5=2� �3E �4f7=2;5=2��=7. The spin-orbit splitting was calculated
with the formula: Eso � E�4f7=2;5=2� ÿ E�4f5=2;5=2�. Here the nota-
tion of 4fj;mj

was used

Table 7. Mulliken population analysis, covalency and dipole
moments at the relativistic LDA level. The nonrelativistic values
are given in parentheses. Xa, SCF, CI results are cited from Table
IX of Ref. [29]

EuO YbO EuS YbS

Ln 4f 6.83 13.71 6.93 13.92

(7.05) (13.95) (7.03) (13.99)

5d 1.03 0.90 0.97 0.62

(1.08) (1.04) (1.05) (0.87)

6s 0.28 0.44 0.36 0.76

(0.01) (0.04) (0.15) (0.45)

6p 0.17 0.20 0.17 0.20

(0.10) (0.17) (0.14) (0.17)

L ns 1.90 1.90 1.91 1.92

(1.93) (1.93) (1.90) (1.91)

np 4.73 4.79 4.61 4.57

(4.79) (4.83) (4.70) (4.60)

Charges LDA �0.68 �0.74 �0.58 �0.51
(�0.75) (�0.78) (�0.66) (�0.53)

Xa �0.66 �0.62
(�0.72) (�0.79)

SCF (�1.04) (�1.13)
Covalency(%)a 66.0 63.0 71.0 74.5

(62.5) (61.0) (67.0) (73.5)

Dipole LDA 5.23 5.59 7.77 7.17

l�D� (6.77) (7.38) (8.96) (8.99)

Xa (6.57) (7.23)

CI (9.18) (10.93)

dl=dR LDA 9.74 7.18 6.16 4.92

[D/AÊ ] (9.33) (10.15) (6.04) (4.95)

Xa (11.8) (6.5)

CI (10.9) (8.6)

a The covalency is de®ned as (1-net charge/2)
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about one, indicating that about one electron is pro-
moted from the Ln 6s to the 5d orbitals in the molecular
formation process. It is interesting to note that the
relativistic decrement of the dissociation energy (see
Table 3) might be ascribed to such an electronic pro-
motion. From the calculations on the europium atom it
is found that the energy di�erence between the two
con®gurations 4f 75d16s1 and 4f 76s2 is nonrelativistic-
ally 0.84 eV and relativistically 1.37 eV (see Table 1), i.e.,
relativity increases the promotion energy for transferring
one electron from Eu 6s to 5d by about 0.5 eV. For
ytterbium the corresponding relativistic increment for
the electron promotion, i.e., the energy di�erence
between Yb 4f 145d16s1 and 4f 146s2 is as large as 0.8 eV
(see Table 1). Therefore, relativity may be one of the
reasons causing heavier lanthanide atoms to possess
weaker bonding potentials than the lighter ones.

The net charges on the metals are less than one,
indicating a strong covalency in these molecules. From
oxygen to sulfur the net charges on metals are reduced
by 0.1 � 0.2e. The covalency given in Table 7, which was
calculated according to Pauling's de®nition of bond
ionicity, namely, covalency � �1ÿ net charges=2�, shows
that polarized covalent bonds exist and relativity in-
creases the bond covalency slightly.

The dipole moments are reduced by relativity due to
the relativistic shortening of the bond lengths and the
slight reduction of the net charges on metals. The mo-
ment derivatives of roughly 10 D/AÊ for EuO and YbO
might indicate dynamical charges of 2e on EuO and
YbO as already mentioned by Wang et al. [29], whereas
the moment derivatives for EuS and YbS are much
smaller. The gross Mulliken and Mayer bond orders [59]
based on AOIM are given in Table 8. The Mayer bond
orders are close to the conventional values of bond
multiplicity and are numerically more stable than the
Mulliken bond orders [32]. So the partial contributions

of atomic orbitals to the gross Mayer bond orders are
preferred to be a criterion to judge the bonding potential
of related atomic orbitals. The following orders can
be derived from Table 8: 5d > 6p > 4f > 6s for EuO,
5d > 6p > 6s > 4f for YbO, 5d > 6s > 6p > 4f for EuS
and 5d > 6s > 6p > 4f for YbS. Relativity decreases the
contributions of the Ln 5d orbitals while it increases
those of the 6s, 6p and 4f orbitals to a di�erent extent.
For YbS the relativistic increment of the 6s orbital
contribution is signi®cant.

4 Conclusions

A new relativistic four-component density functional
program package, BDF, that can deal with total-energy-
related chemical properties of systems containing heavy
elements has been developed and was shown to give
reliable results for lanthanide atoms and diatomic
molecules. The present work shows that modern (non-
relativistic) density functionals also perform reasonably
well for inner 4f shells of lanthanide systems within the
fully relativistic framework. Of course, further appli-
cations to other (lanthanide) elements and their com-
pounds have to be made to make a ®nal judgement.

Relativistic e�ects in¯uence the bond lengths and
vibrational frequencies of the molecules studied here
only modestly, whereas they improve the dissociation
energies drastically. The relativistic decrement of disso-
ciation energies can be correlated to the electron pro-
motion from the Ln 6s to the 5d orbitals in the molecular
formation processes.

The calculated spectroscopic constants for YbO
�f 14 1R�� coincide with the latest experimental data for
the ground state of YbO only in the case of dissociation
energy and vibrational frequency, whereas a longer bond
length is obtained in agreement with other theoretical
investigations. According to the present calculations, the
``experimental'' bond lengths for EuS and YbS, which
were derived from empirical interpolations, seem to be
too long and need to be revised.

The Ln 4f orbitals are essentially localized. The bond
orders are mainly contributed by the interaction between
the Ln 5d and ligand np orbitals. The contribution to
bond orders by the lanthanide atomic orbitals is in the
order of 5d > 6s � 6p > 4f . Relativistic e�ects decrease
the bonding potential of 5d orbitals while they increase
that of 6s, 6p and, to a lesser extent, 4f orbitals. How-
ever, the order of bonding potential remains unchanged.
Relativistic e�ects increase the covalency of the mole-
cules studied here, which is parallel with the relativistic
population increase on the Ln 6s and 6p orbitals.
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